“In our view,” write the study’s authors, “the debate should move beyond this contrast, because the merits of either approach can be very context dependent.” When teaching students that the chemical formula for water in H2O or asking them to perform “straightforward operations” like “how to calculate the number of atoms in 118 grams of water,” direct instruction may well be the most efficient means at a teacher’s disposal. But when the material is more open-ended or requires students to apply learning in tricky new contexts—“how does water’s boiling point change with altitude?”—inquiry-based learning may be a better way to “foster deep conceptual understanding,” the researchers note.
Inside real classrooms, teachers move fluidly between modes: They might conduct a lecture for 20 minutes, then ask students to research a related phenomenon and propose hypotheses. Or, having established a strong foundation of knowledge through direct instruction, they may proceed to a project or research paper that requires students to generate their own knowledge within a domain.
Moving briskly through dozens of reviews on the topic, the researchers locate the same dynamics in real-world settings: The shifting demands of both the curriculum—and the students—means ”that teachers need not be bound to one mode throughout and can flexibly decide on the pedagogical approach for each concept and situation.” Combining elements of each approach, they note with a hint of weariness, “seems unavoidable when designing realistic, comprehensive real-classroom intervention.”
The takeaway: Combine direct instruction, such as lectures, demonstrations, and closely-guided practice, with inquiry-based approaches that promote deeper comprehension and transference, such as open-ended questions, self-directed research, and projects. Be flexible and let the needs of your students and your learning goals guide your decisions.
THE VALUE OF BACKGROUND KNOWLEDGE FOR ALL AGES
A growing number of studies aligned with the “science of reading”—all published in the last few years—shed light on the critical importance of embedding themes across your lessons, working to connect new material to prior learning, and building upon a rich foundation of background knowledge that students can access when encountering new ideas.
In a Harvard-led 2023 study, researchers compared a traditional approach to reading instruction—building skills like identifying the main idea or citing evidence from the text—to a “knowledge-rich” approach that asked students to familiarize themselves with a topic in order to build “generalized schemas that can be accessed and deployed when new, but related, topics are encountered.” For example, if learning about how animals survive, they’ll start with “concrete cases” such as polar bears living in the Arctic, which later help them with more difficult but related concepts such as adaptation and ecosystems. Compared to their peers, students in the background knowledge approach scored 18 percent higher on later, science-related reading comprehension tests.
Building upon the same content-rich approach, another 2023 study, this one led by University of Virginia researchers, saw reading scores improve by 16 percentile points—a gain that would see U.S. students jump from 15th to fifth place on international reading tests, if implemented nationally.
As you start new lessons, reinforce connections: Ask students to review a video or reading that introduces new information, then have them identify new vocabulary terms and concepts and actively connect them to prior learning. In 2013, researchers discovered that when sixth-grade students created concept maps to connect related ideas, for example, their reading comprehension scores rose sharply.
The takeaway: When planning for the year, identify a few unifying themes, and then ”ask yourself, ‘How can we integrate instruction around a coherent schema?’” suggest James Kim and Mary Burkhauser, who led the Harvard study on background knowledge. Kick off new units with activities that provide accessible, familiar entry points and have students work to connect them to the “big ideas” they’ve been exploring all year.
DRAW MORE TO LEARN MORE
In recent years, cognitive scientists have endorsed the notion that drawing is a powerful way to learn, since students not only encode the material more deeply—processing information visually, kinesthetically, and semantically.
But kids don’t need to be artists to partake of the benefits. In a 2022 study, researchers asked students to create simple sketch notes focused on “capturing the relationships described in texts”—linking critical concepts with arrows, annotations, and other relational markings to create a bird’s-eye view of the conceptual terrain. With the image completed and a new vantage point established, students were able to take stock of how ideas were connected and spot conceptual gaps in their thinking. Fifth graders who created sketchnotes outperformed their study-only peers by 23 percent on later tests of higher-order thinking, an outcome the researchers attributed to the creation of a “coherent mental model” that helped students “see the big picture.”
Representational drawings, meanwhile—simple sketches of cells or tectonic boundaries, for example—can boost factual recall by nearly double, according to a 2018 study, but are less effective in terms of seeing how ideas connect broadly across a topic. Ask students to draw as a follow-on activity when introducing key concepts that lend themselves to visuals, because drawing is an effective “memory facilitator,” the researchers explain, and forces students to produce a “detailed recollection, as opposed to a more general feeling of familiarity.”
The takeaway: Drawing is generally under-utilized in classrooms, and offers a wide range of productive formats. From more detailed renderings to simple sketches, mind maps, and annotated flow charts, drawing reliably deepens factual recall and comprehension as students tap into multiple ways to reconstruct the material.
PLAN BREAK TIME INTO LESSON PLANNING
More seat time equals more learning, one common view of education holds.
But recent studies cast doubts on the claim. In 2021, neuroscientists at the National Institutes of Health used magnetoencephalography—a sensitive brain-scanning technique—to observe the neural activity of young adults as they learned how to type with their nondominant hand. After a practice session, the study participants were given a short break before continuing to work on acquiring the skill.
When analyzing the data, the researchers discovered that during wakeful rest the brains of the participants replayed the typing sequences over and over at a high rate of speed—flipping the material from the neocortex, where sensory and motor skills are processed, to the hippocampus, the brain’s memory center, over two dozen times in the span of 10 seconds.
Below the threshold of consciousness, the researchers confirmed, participants were mentally practicing the skill during breaks. The finding echoes a groundbreaking 2001 study that traced the same “neural replay” activity in rats who were learning how to navigate mazes.
We greatly underestimate the value of waking rest during learning, the scientists suggest. The success of early learning, in particular, is largely determined by the small gains that “occur between, rather than during, practice periods,” the study authors note—and incorporating downtime into your learning activities “plays just as important a role as practice in learning a new skill.”
The takeaway: Brain breaks aren’t just ways to cool off and re-energize; they’re an integral part of memory consolidation and may even play a role in developing new insights. When planning lessons—particularly those that cover new material—consider blocking off intervals of rest, relying on simple activities like letting kids listen to music, chat for a minute or two with friends, or take a quick walk around the room.